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ABSTRACT
The emergence of nonlinear optical (NLO) measurement approaches
has provided new windows into molecular and macromolecular
structure within thin films and materials. The greatest barriers in
mining this structural information increasingly appear in meaningfully
relating these macroscopic results back to molecular-level descrip-
tions, driven largely by the increasing complexity of the molecular
systems and interfacial architectures under interrogation. As NLO
methods continue their expansion into increasingly diverse disciplines,
so grows the need for tools to guide this evolution without sacrificing
the mathematical rigor of more traditional tensor representations.
Recent developments reviewed in this Account are designed to
facilitate interpretation of complex assemblies using relatively simple
but still quantitatively accurate visual representations of the polariza-
tion-dependent optical nonlinearity, both for individual chro-
mophores and for polymeric assemblies of coupled chromophores.
Although the primary focus of this Account is on second-order
nonlinear optical effects, including second harmonic generation and
sum frequency generation, many of these same concepts also directly
apply to higher-order phenomena.

Introduction
Remarkable and wonderful interactions between light and
matter arise in intense optical fields. Practical applications
of these nonlinear optical (NLO) processes were enabled
with the advent of lasers. The first definitive observation
of a NLO interaction was in 1961 by Franken and co-
workers, in which second harmonic generation (SHG,
Figure 1) was demonstrated in a quartz crystal using a
millisecond pulsed ruby laser.1 Since these early days, the
field of nonlinear optics has grown rapidly, driven largely
by the ever-increasing availability of short-pulsed lasers
combined with the unique capabilities and information

content of NLO measurements. The symmetry of even-
ordered NLO processes such as SHG and sum frequency
generation (SFG, Figure 1) have allowed for unprec-
edented surface selectivity using optical methods. In the
case of SHG, relatively simple and inexpensive instru-
ments routinely yield sub-monolayer surface sensitivity.
Most importantly for the present purposes, the coherent
nature of NLO effects allows access to exquisite molecular
and macromolecular structural information from the
polarization dependence of the measurement. Given the
relative ease of data acquisition in many measurements,
data analysis often represents the greatest bottleneck in
meaningfully relating the macroscopic polarization-de-
pendent measurements back to molecular-scale structure.
Some recent advances in this area are reviewed here, with
a primary focus on intuitive but still fully quantitative
molecular-level interpretations of NLO interactions.

The Molecular Response
Classical Anharmonic Oscillator Model. Before delving

into the finer details of polarizability tensors derived from
quantum mechanics, it makes sense to first start with a
review of comparatively simple classical models of nonlinear
optics. Frequency doubling is the conceptually simplest and
practically most common NLO process and will be consid-
ered first. Classically, frequency doubling and mixing can
be interpreted within the context of an anharmonic oscillator
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FIGURE 1. Energy level diagrams for SHG (left) and vibrational SFG
(right).
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such as the electron cloud polarizability of a heteronuclear
diatomic molecule.2 An illustration of this description is
shown in Figure 2. For small driving amplitudes, the induced
polarization of the electron cloud by the optical field is
relatively small, and the harmonic terms in the polarizability
dominate such that the molecular polarization tracks the
driving frequency. However, for higher driving forces (e.g.,
stronger electric fields), the anharmonic terms become
important. These terms arise from differences in the mo-
lecular polarizability on the upstroke of the field relative to
the downstroke arising from asymmetry within the molecule.
For example, if one atom of a heteronuclear diatomic
molecule “holds” the electron cloud more tightly than the
other, this difference in polarizability manifests itself as
anharmonicity within the molecular polarizability, with the
net resulting polarization shown as the red trace in Figure
2a.

The nonlinear polarizability depicted in Figure 2a is
represented in the time domain. In the frequency domain,
it should be obvious from inspection of Figure 2c that
addition of a relatively small amount of a frequency-
doubled contribution recovers the distortions expected by
the anharmonicity, as long as the distortions are relatively
small. Similar arguments also apply for classical descrip-
tions of SFG when using two different driving frequencies.2

This hypothetical heteronuclear diatomic molecule
represents the simplest possible SHG or SFG active
system. In more complex molecules, the induced SHG
polarization does not generally orient in the same direc-
tion as the driving field. The nonlinear polarization can
be conveniently described by a vector in a Cartesian
coordinate system, bPNL. Since three Cartesian coordinates
also describe each of the incident driving fields, a 3 × 3
× 3 Cartesian tensor describes all possible nonlinear
polarizations generated under all possible incident po-
larizations (i.e., a rank three tensor �ijk, each element of
which describes the efficiency of generating a NLO
polarization along the i-coordinate of the molecule when
driven by incident fields polarized along the j and k
molecular coordinates).

This simple classical model provides an intuitive frame-
work for understanding many key aspects of frequency

doubling and mixing at the molecular level. For example,
the sign of the frequency-doubled light depends on the
orientation of the oscillator. From inspection of Figure 2, two
oppositely oriented anharmonic oscillators would generate
SHG polarizations that exactly canceled. A sample comprised
of many molecules with random orientations will result in
complete cancellation of the SHG response. Furthermore,
the classical model provides a foundation for interpreting
SHG and SFG through rank 3 tensors.

Quantum Mechanical Models. Although intuitively ap-
pealing, the classical model for SHG and SFG does not clarify
the underlying mechanism dictating the nonlinear polariz-
ability of the electron cloud. It could be argued that the best
place to start for developing an intuitive understanding of
quantum mechanical models for the molecular NLO re-
sponses is with the computational algorithms used to
generate them. In general, three different and complemen-
tary approaches have found wide-spread use: (1) adiabatic
calculations performed in the limit of slowly varying or DC
electric fields; (2) application of time-dependent perturba-
tion theory to derive and calculate sum-over-states expres-
sions for the molecular tensor; (3) contraction approaches
that allow the resonant molecular tensor to be expressed as
direct products of lower-order effects. These are certainly
not the only methods of calculating the nonlinear polariz-
ability, but they serve as illustrative examples describing the
conceptual frameworks most often used to interpret the
molecular origins of NLO phenomena.

Adiabatic Nonlinear Polarizability. In the first ap-
proach, the nonlinear polarizability tensor is calculated
from partial derivatives of the molecular energy, H, with
respect to the DC electric field, E.3,4

�ijk )
-∂

3H
∂Ei ∂ Ej ∂ Ek

(1)

Equation 1 yields the adiabatic hyperpolarizability, in
which the electron cloud responsible for the NLO polar-
ization is assumed to respond fast relative to the time scale
of the optical period. Another way of stating this limit is
to say that the adiabatic approximation implicitly assumes
that all electronic resonances are sufficiently high in
energy that they yield equal contributions to the genera-
tion of both of the two virtual states.

The adiabatic calculations in the DC limit build on the
success of loosely similar computational approaches for
describing Raman tensors, in which the adiabatic Raman
polarizability is calculated from the change in DC polar-
izability as bonds are translated along normal vibrational
coordinates.5,6 For most vibrational Raman transitions,
this is a fairly good approximation, since the energy
difference between virtual states for the Stokes and anti-
Stokes Raman transitions equals just one vibrational
quantum and the energies of the virtual states are typically
much lower than electronic transitions. However, these
same favorable conditions do not generally apply for
electronic SHG and vibrational SFG. In SHG, the energies
of the two virtual states (one at ω and one at 2ω) always
differ by 100%, and the doubled frequencies often ap-
proach electronic resonances. As a result, the adiabatic
hyperpolarizability is not particularly reliable for calcula-

FIGURE 2. Classical anharmonic oscillator model describing second
harmonic generation. Linear and nonlinear responses (a) and the
anharmonic polarizability (b) for a hypothetical heteronuclear
diatomic molecule. The nonlinear response shown in (a) in the time-
domain is recovered by the summation of ω and 2ω (c).
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tions of nonlinear polarizabilities. For example, one glaring
inadequacy of the adiabatic hyperpolarizability calculated
using eq 1 is its invariable prediction of fully symmetric
molecular tensors with complete interchangeability of all
the indices (i.e., Kleinman symmetric),7 which is reason-
ably well established as being generally invalid under
practicalexperimentalconditions,evenfarfromresonance.8–10

Furthermore (and most importantly), the adiabatic po-
larizability does not allow for calculation of resonance-
enhanced effects in SFG or SHG arising when either an
incident or exigent frequency approaches resonance with
a real transition within the molecule, which underlay
virtually all NLO spectroscopy measurements.

Sum-over-States Expressions of Optical Nonlinearity.
The most exciting aspects of molecular NLO phenomena
often arise from resonance-enhanced spectroscopic mea-
surements, for which the adiabatic expression in eq 1
clearly cannot apply. A very general treatment for describ-
ing resonant NLO interactions through the use of time-
dependent response functions can be found in an excel-
lent treatise by Mukamel (to cite just one source).11 This
general approach can be simplified considerably by as-
suming that each molecular excited state decays inde-
pendently with a single-exponential time dependence (i.e.,
in the limit of a frozen matrix exhibiting inhomogeneous
broadening such that the dynamic motion of the bath is
either much faster or much slower than the excited state
lifetimes of the individual molecules). It should be noted
that this will not generally be a particularly good ap-
proximation in complex and highly coupled systems.
However, the primary focus of the present work is on
development of intuitive methods for interpreting polar-
ization dependence in the frequency domain, which is not
likely to be greatly affected by these interesting but
comparatively subtle short-time inter- and intramolecular
dynamic interactions. At the single-molecule level, expo-
nential decays in the time domain translate to Lorentzian
line shapes in the frequency domain, such that the
molecular nonlinear polarizability can be written analyti-
cally as a double sum-over-states (SOS) with six terms for
SFG (including SHG as a specific subset).2,12,13

�ijk(-ωsum;ωa, ωb)) -1

4p2
Σ
p

Σ
q

{ µ0q
i µqp

k µp0
j

(ωq +ωsum + iΓq)(ωp+ωa + iΓp)
+

µ0q
j µqp

k µp0
i

(ωq -ωa - iΓq)(ωp -ωsum - iΓp)
+

µ0q
i µqp

j µp0
k

(ωq +ωsum + iΓq)(ωp+ωb + iΓp)
+

µ0q
k µqp

j µp0
i

(ωq -ωb - iΓq)(ωp -ωsum - iΓp)
+

µ0q
k µqp

i µp0
j

(ωq -ωb - iΓq)(ωp +ωa + iΓp)
+

µ0q
j µqp

i µp0
k

(ωq -ωa - iΓq)(ωp +ωb + iΓp)} (2)

The nonlinear polarizability in eq 2 derived from time-
dependent perturbation theory consists of two infinite
summations over all excited states in the system and six
triple products of transition moments, each of which
contains a unique frequency-dependent response. Analo-
gous expressions for higher-order NLO and multiphoton
processes have significantly more terms, expressed as
n-fold summations over (n + 1)! terms for an n-order NLO
process (for example, a seven-wave mixing process is
described by a sextuple summation over 5040 products
of eight transition moments and corresponding frequency
terms).

Despite the unwieldiness of the above equation and
its analogs for higher-order effects, it contains a certain
underlying physical elegance. The polarized molecule is
not in an eigenstate. Therefore, the time dependence
associated with the oscillatory polarization of this virtual
state can be interpreted by a summation of eigenstates.
Each eigenstate evolves at its own characteristic frequency
(ω ) E/p), the linear combination of which results in the
time-dependent polarizability represented in Figure 2.
Each triple product of transition moments in eq 2 corre-
sponds one-to-one to a unique Feynman pathway con-
necting the initial state back to the initial state.12,14

However, chemical intuition about the molecular interac-
tions driving optical nonlinearity in molecular systems is
not necessarily directly obvious from such explicit SOS
expressions.

Contraction of Sum-over-States Equations. Underly-
ing intuitive molecular mechanisms masked by full SOS
expressions such as shown in eq 2 can often be unveiled
by simple algebraic manipulations. By folding in one of
the two infinite summations in eq 2, the same SOS
expression can be recast identically in the following two
equivalent contracted forms.14,15

�ijk(-ωsum;ωa, ωb)) -1

2p2
Σ
p

(R0p
kj )2PEµp0

i
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j
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+

(R0p
ij )ARµp0

k
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-1

2p2
Σ
q

µ0q
i (Rq0

jk )2PA

ωq0 -ωsum - iΓp
+

µ0q
j (Rq0

ki )SR

ωq0 +ωa + iΓp
+

µ0q
k (Rq0

ji )SR

ωq0 +ωb + iΓp

(3)

In eq 3, the r terms refer to rank two tensors describing
Stokes Raman (SR), anti-Stokes Raman (AS), two-photon
absorption (2PA), or two-photon emission (2PE), indicated
by the subscripts. The two expressions in eq 3 are each
mathematically identical to eq 2, with no additional
assumptions or approximations. In fact, it has recently
been shown that SOS expressions for broad classes of NLO
and multiphoton phenomena can be similarly contracted
to comparatively simple sums of direct products of lower-
order effects.14,15

Under conditions of single resonance enhancement
with one of the incident frequencies (typical of vibrational
SFG) or with the exigent frequency (typical of electronic
SHG and SFG), the NLO analog of the rotating wave
approximation (RWA) can be invoked to further simplify
the expressions for the molecular tensor. In essence, all
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the nonresonant interactions can be reasonably assumed
to vary slowly with frequency across the line shape
function of the resonance and can therefore be treated
as a constant nonresonant background (i.e., the NLO
equivalent of the refractive index). Invocation of the RWA
results in the following expressions for vibrational SFG
(resonant with ωb) and electronic SHG (resonant with 2ω)
for molecules initially in the ground state.14–16

�ijk
(2)

(-ωsum;ωa, ωb) )
-1
2p∑n

Sn(ωb) · (R0n
ij )ARµn0

k (4a)

�ijk
(2)(-2ω;ω, ω) ) -1

2p∑n

Sn(2ω) · µ0n
i (Rn0

jk )2PA (4b)

In eqs 4a and 4b, the line shape function S has been
expressed generally, such that the equations are valid for
line shapes other than Lorentzian (for Lorentzian line
shapes, Sn(ω) ) [ωn - ω - iΓn]-1). The underscore inside
the parenthetical indicates the resonance-enhanced con-
dition for which the equations hold. The molecular tensors
describing higher-order NLO or multiphoton effects may
be similarly contracted to direct products of lower-order
phenomena using identical methods.14

At this stage, we have basically just gone through an
extensive exercise to rigorously derive the expressions in
eqs 4a and 4b that we probably could have guessed just
by direct inspection of the energy-level diagrams in Figure
1. In the case of vibrational SFG, the NLO process “looks”
like it should consist of one-photon vibrational excitation
coupled coherently to an anti-Stokes Raman transition,
which is precisely the result obtained quantum mechani-
cally by eq 4a. Similarly, in the case of electronic reso-
nance enhancement, inspection of the energy-level dia-
gram suggests that the molecular tensor is described by
the coherent combination of two-photon absorption and
stimulated emission, consistent with eq 4b. Although in
retrospect it seems quite obvious, it is worth highlighting
that a rigorous mathematical connection between two-
photon absorption and SHG was only first demonstrated
in 2004.15 Most significantly for the present purposes,
these different mathematical descriptions of the molecular
hyperpolarizability (adiabatic, sum-over-states, and con-
tracted expressions) allow for the use of visual representa-
tions using different and complementary approaches,
described in the next sections.

Visualization of Linear and NLO Tensors
Several established tools originally developed for visual-
izing Raman (and related) tensors provide a convenient
framework for extension to higher-order NLO phenom-
ena.5 Therefore, it makes sense to provide a brief review
of common methods for visually representing the polar-
ization dependence of Raman spectroscopy. Under the
most common conditions in the adiabatic limit, the
Raman tensor can be reasonably described by a symmetric
(or more generally, Hermitian) 3 × 3 matrix.5 This matrix
can be represented visually by a polarizability ellipsoid,
the principal axes of which parallel the eigenvectors of
the symmetric matrix (Figure 3).5 In the present formula-
tion, the distance from the origin along any direction in

the ellipsoid effectively describes the efficiency of generat-
ing a Raman electric field polarization in that direction
when driven by a coparallel incident field (please note that
this definition differs somewhat from common definitions
for Raman polarizability ellipsoids5). Alternatively, the
same information can be concisely conveyed through the
use of three double-sided arrows representing the three
principal moments of the Raman tensor. The directions
parallel the eigenvectors and the lengths indicate the
magnitude of the corresponding eigenvalues, shown in
Figure 3. The ellipsoid representations and the diagram-
matic approaches contain equivalent information, both
of which completely and quantitatively describe the
polarization dependence of Raman in the limit of a
symmetric tensor.

Because Raman and two-photon absorption (TPA) are
both described by rank 2 tensors; these same visualization
tools are equally applicable for representing the polariza-
tion dependence of TPA. Whereas the eigenvalues of the
Raman tensor are often like-signed, resulting in “squashed
football” polarizability ellipsoids (Figure 3a), TPA tensors
often exhibit sign changes between principal elements,
such that the polarizability ellipsoids routinely exhibit
“clover-leaf” structures (Figure 3b). Interestingly, these
sign changes result in nodes. In the case of TPA, this node
corresponds to an angle for which linearly polarized light
is predicted to exhibit a minimum in the two-photon
excitation cross-section.

Extension of Visualization Techniques to Second-
Order NLO Phenomena. With this review of previous
methods for visualizing rank 2 Raman and TPA tensors
in place, attention can now be turned to interpreting rank
3 SHG and SFG tensors using a similar toolkit. At the
molecular level, the resonant nonlinear polarizability
tensor is given through eq 4a as the line shape function
multiplied by the direct product of the transition moment
and either the TPA or Raman tensor (depending on
whether the resonant interaction is with ωsum or ωb,
respectively). Consequently, quantitative representations
of resonant �(2) tensors can be generated simply by
including the vector indicating the transition moment in
combination with the diagrammatic representations of the
Raman or TPA tensors described previously.17,18 This
arrow representation is much more than just a visual aid
for qualitatively interpreting polarization-dependent NLO
effects; it is a complete and rigorous quantitative repre-
sentation of the resonant �(2) tensor. Projection of these
arrows onto any particular selection of Cartesian coordi-
nates in combination with the line shape function allows
quantitative reconstruction of all 27 unique nonzero

FIGURE 3. Ellipsoid and diagrammatic representation of r(1) tensors,
such as those describing Raman (a) and TPA (b).
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resonance-enhanced tensor elements present in that
coordinate system as a function of wavelength.17

The polarizability ellipsoids used to visually represent
Raman (and TPA) tensors through space-filling structures
also have direct analogs in higher-order optical effects,
exemplified in Figure 4. In this case, the distance from
the origin of the hyperellipsoid indicates the magnitude
of the sum or second harmonic frequency field in any
direction when generated with coparallel incident fields,
with green indicating positive sign and red negative sign.
As in the Raman and TPA cases, these hyperellipsoid
representations are fully quantitative, containing much of
the same information as the diagrammatic representations
using arrows (some of the chiral contributions are not
recovered by the hyperellipsoids of �(2) tensors).

The shapes of the hyperellipsoids can be conveniently
interpreted by considering the transition moments and
the TPA and Raman tensors. From inspection of Figure
4, the direct product of the transition moment (repre-
sented by the analog of a p-type atomic orbital) with the
TPA or Raman ellipsoid recovers the shapes of the
hyperellipsoids. For example, multiplication of the main
positive lobes in the r(1) tensor by the transition moment
results in a positive product on the right and a negative
product on the left in the �(2) tensor. The negative minor
lobes in the r(1) tensor undergo similar transformations
upon multiplication by µ, with the double negative in the
downward direction resulting in a positive lobe, etc.

Optical Nonlinearity in Systems of Multiple
Chromophores
Up to this point, discussion has focused on building up
the tools for representing the NLO properties of single
chromophores. Now, efforts are turned to considerations
of visualizing the polarization-dependent NLO responses
of systems of many coupled chromophores, starting with
dimers, followed by semi-infinite polymers, and finally
surface and bulk assemblies. In this section, a perturbation
theory approach is described for treating the NLO proper-
ties of all of these assemblies (from dimers to macroscopic
surfaces and materials) using one simple toolbox.

Dimer Consisting of Two Coupled Chromophores.
Coupling between two identical monomers to form a
dimer serves as an excellent intuitive starting point when
working toward extended polymeric systems. It makes
sense to first review the role of coupling on the linear
optical properties in a dimer before tackling the NLO
properties. In brief, coupling between two chromophores
in a dimer generates sum and difference exciton states,
described by the positive and negative addition of the
different initially degenerate ground- and excited-state
wave functions of the monomers. Depending on the
strength of coupling, these interactions can have a neg-
ligible or a profound impact on the polarization depen-
dence of the NLO tensor. The weak coupling limit is
easiest to handle, so it will be considered first. In the
following discussion, “weak coupling” is defined prag-
matically based on the energy splitting (∆pω) arising from
coupling between chromophores compared with the
experimental line width of the resonance. In the limit of
a frequency shift from exciton coupling, ∆ω, that is much
less than the resonant line width, Γ (i.e., ∆ω , Γ), the
two exciton peaks cannot be independently resolved
spectroscopically, and the total NLO response will be
approximately equal to that expected from multiple
uncoupled frequency-degenerate chromophores. In this
weak-coupling limit, the macromolecular NLO activity is
simply given by coherent summation of all the individual
monomer contributions, often expressed by orientational
averages.2,18 If the coupling is sufficiently strong (i.e., ∆ω
g Γ), the NLO properties of the individual spectroscopi-
cally resolved exciton states can still be reliably recovered
by simple orientational averaging combined with phe-
nomenological treatment of the influence of coupling.17,19

In this case, the polarization dependence can still be
interpreted to first order by simply adding up all the
contributions in the absence of coupling, then allowing
the resulting sum and difference states to separate in
energy.

The transition moments of two isolated exciton states
in a dimer will generally be orthogonally polarized, given
by the vector sum and difference of the two identical
monomer transition moments (Figure 5). Similarly, the
TPA or Raman tensors of the individual exciton states are
also described by sums and differences of the monomer
tensors, with the addition and subtraction made a bit
more interesting by the use of matrices. Nevertheless,
inspection of the resulting r(1) tensors for the sum and
difference exciton states in Figure 5 yields diagrammatic
representations and ellipsoids consistent with what one
might have guessed for the sums and differences of the
monomer tensors. Once µ(0) and r(1) have been deter-
mined for each exciton state, the second-order nonlinear
polarizability is simply given by direct product of µ(0) and
r(1) according to eq 4a and 4b. Previous computational
and experimental studies of the coupling in binaphthol
and in amide models for proteins support the quantitative
reliability of this perturbation theoretical approach in
second-order nonlinear optics.17,19,20

FIGURE 4. Hyperellipsoid (bottom) arising from the direct product
of the TPA tensor (left) and the transition moment (right).
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The preceding discussion focused on reconstruction of
the exciton �(2) tensors by independent evaluation of µ(0)

and r(1) tensors for the different exciton states. However,
the order of operations can be reversed with the same net
result. In other words, this same methodology can also
be performed from addition or subtraction of the mono-
mer �(2) tensors directly (Figure 5). However, use of the
monomer �(2) tensors extends the applicability of this
perturbation theory approach to adiabatic (or other)
calculations of the monomer hyperpolarizability.

Figure 5 serves to highlight some distinct advantages
of these visual methods for describing coupled systems.
Both the arrow and hyperellipsoid visual representations
allow the tensors describing the individual exciton transi-
tions to be represented quantitatively by projections of
the individual monomer responses. More significantly,
these visual methods, combined with the validity of
perturbation theory, facilitate the interpretation of the
polarization dependence of coupled systems simply by
direct inspection of the monomer tensors and their
relative orientation.

An explicit example for this procedure is shown in
Figure 6, in which the NLO response of the exciton states
in N-acetyl-N′-methyl glycyl amide (di-NMA) are com-
pared with the tensors predicted from perturbation theory
by summation of the individual monomer N-methylac-
etamide (NMA) tensors.17 The tensors describing the
independent π f π* electronic transitions in the NMA
monomers are shown in Figure 6. This transition generates
two exciton states in the dimer, corresponding to the
pairwise addition and subtraction of the excited eigenstate

wave functions. The diagrammatic representation of the
symmetric additive contribution in di-NMA is generated
by directly summing the appropriately oriented monomers
as depicted in Figure 6. Similarly, the NLO tensor for the
other exciton transition is given by the difference. The
tensors derived from perturbation theory in this manner
matched up remarkably well with those obtained directly
from quantum chemical calculations of the fully coupled
dimer, also shown in Figure 6.

Extended Polymeric Systems. Once the effort of de-
veloping a formalism for treating coupling in dimers has
been expended, it is remarkably straightforward to extend
these approaches to semi-infinite repeating assemblies
containing many identical coupled chromophores. Biopoly-
mers and proteins serve as interesting representative
models for algorithms that can be applied to diverse arrays
of polymeric systems. An R-helix is formally a 3.613 helix,
with a repeat unit consisting of 18 monomers. Within the
electric dipole approximation for light, the translation of
a few angstroms of each chromophore along the helix
chain is inconsequential, such that the NLO properties
are dominated by the relative orientation of each mono-
mer within the polymer. The improper C18 rotation axis
yields the same symmetry as a C∞ axis in second-order
nonlinear optics, such that three exciton states are ex-
pected to emerge; one with the transition moment polar-
ized along the helix axis and a doubly degenerate pair
polarized perpendicular to the helix axis.

Exciton splitting can potentially play a significant role
in describing the NLO properties of the electronic excited
states, in which the exciton coupling is relatively strong.
If the individual exciton states can be spectroscopically
resolved, the polarizationdependence of each state is given
by projection and summation of the monomer contribu-
tions through orientational averages.

A depiction of this process for an R-helix and the
corresponding calculations for the �(2) tensor of the
polymer are given in Figure 7. With the validity of
perturbation theory for treating coupling between amide
subgroups having been confirmed (e.g., through calcula-
tions such as those shown in Figure 6), the nonlinear
optical properties of extended biopolymers can be calcu-
lated using the same approach as for the dimer, but with
significantly more monomeric units.

FIGURE 5. Diagrammatic representations for predicting the polariza-
tion-dependent electric dipole allowed absorption (described by µ+
and µ–), Raman and TPA (described by r+ and r–), and SFG and
SHG (described by �+ and �–) of different exciton states in a dimer.
The diagrammatic representations are shown to the left, and the
corresponding surface representations to the right (see text for
details). The antisymmetric contributions (not shown) can be similarly
treated by simple vector addition as described in Figure 3.

FIGURE 6. Comparison of the resonant tensors for the NV1 πf π*
transitions in the di-NMA predicted by perturbation theory from the
monomer response (Predicted) and those obtained by direct quantum
chemical calculations of the fully coupled system (Calculated).
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In the case of the R-helix in Figure 7, the shapes of the
hyperellipsoids shown in Figure 7c can be understood by
inspection of the diagrammatic representations in Figure
7b. Considering first the contributions from the transition
moments, vector addition of the single-sided green arrows
shown in the figure will result in a transition moment
pointing toward the top of the page aligned along the helix
axis. Similarly, subtraction of any pair of transition mo-
ments on opposite sides of the helix results in a transition
moment oriented orthogonal to the helix axis. Coherent
addition of the TPA ellipsoids will generate a TPA ellipsoid
for the sum state with a symmetric negative lobe aligned
along the helix axis and an orthogonal positive lobe
running symmetrically about the helix (qualitatively simi-
lar to a dz2 atomic orbital). The direct product of these
two will result in the hyperellipsoid shape depicted to the
right for the lower-energy sum state. Similar arguments
can be made for describing the difference state but are a
bit more complicated to concisely describe because of the
phase shift in the transition moment that arises as a
function of rotation about the helix axis.

In the limit of weak splitting, the situation is even
easier. The net NLO tensor given by the sum of the two
exciton states corresponds exactly with what one would
obtain simply by taking the orientational average of the
monomers (i.e., in the absence of any significant cou-
pling), also depicted in the figure on the far right. In
vibrational SFG, these exciton states typically fall in the
weak-coupling limit, such that the individual vibrational
states cannot be independently resolved spectroscopically.
In this limit, the NLO properties are simply given by
coherent addition of the different monomer contributions
within the protein through orientational averaging, and
the role of exciton coupling can be neglected.

Macroscopic NLO Surface Response. Although the
development of molecular-level descriptions of chiral
effects in SHG and SFG is a critical first step, NLO
measurements are invariably made on assemblies of many
chromophores rather than on single molecules. The
connection between the laboratory-frame NLO suscepti-
bility of a thin film or material and the molecular-frame
nonlinear polarizability can be approximated by the

coherent addition of the contributions from the individual
molecular responses.2,18

�IJK )Ns∑
ijk

〈RIiRJjRKk〉�ijk (5)

The coordinate transformation matrices represented by
R in eq 5 connect the molecular and macroscopic frames
by the three Euler angles θ, ψ, and φ, describing the tilt,
twist, and azimuthal rotation angles, respectively. Equa-
tion 5 simply describes the macroscopic NLO response
of a surface assembly or material in the weak coupling
limit and is generally applicable provided that the energy
splitting from intermolecular interactions is much less
than the full width at half-maximum (FWHM) of the
corresponding spectral line shape. Consequently, many
of the same visualization tools developed for interpreting
polymer responses can also be used directly for the
interpretation of the macroscopic NLO properties of the
surface assemblies. In this case, the hyperellipsoids de-
scribe the macroscopic polarization-dependent NLO ac-
tivities of whole assemblies.

Complications from Linear Optical Properties
In practice, the conceptually simple descriptions pre-
sented in the preceding sections mask many practical
complications associated with experimentally determining
the �(2) tensor in eq 5. First, SHG and SFG measurements
do not directly yield the 3 × 3 × 3 Cartesian tensor in eq
5, but rather probe a 2 × 2 × 2 Jones tensor that relates
the Jones vector of the detected nonlinear polarization to
the Jones vectors of the two driving fields (which are
degenerate in SHG). By direct analogy with the linear
optical properties of thin films in the absence of scattering,
the Jones tensor describes the complete set of observables
present in a single nonlinear optical measurement.21,22 In
the limit of a very thin film (much less than the wavelength
of light), transformation from a Jones tensor to a Cartesian
tensor given by eq 5 generally require precise knowledge
of the optical constants of the ultrathin film.18,23,24 For
films only a single molecular layer in thickness, indepen-
dent determination of these optical constants can be
nontrivial. For thicker films and macroscopic materials,
the linear optical constants can be obtained more pre-
cisely, but the simplifying assumptions afforded by sheet
models no longer hold, and new complications associated
with birefringence, interference, and phase-matching
conditions emerge.

Perspectives and Outlook
Polarization analysis in nonlinear optics will continue to
become an increasingly important element of this still-
emerging discipline, the potential of which remains largely
untapped. It is our hope that this review will help to foster
this growth process by facilitating more intuitive molec-
ular-level descriptions of polarization-dependent NLO and
multiphoton processes that still retain the mathematical
rigor of analytical expressions. Clearly, NLO measurements
access information that is unique from and complemen-
tary to traditional linear spectroscopic and polarization-
dependent methods. Polarization analysis in linear optics

FIGURE 7. Ball and stick (a) and the diagrammatic (b) representations
(shown here for the electronic NV1 π–π* transition) of the R-helix.
Hyperellipsoids for the strong and weak coupled exciton states of
an R-helix (c).
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of thin films has led to a powerful characterization
technique in linear ellipsometry. Interference effects
within thin films underpin the development of antireflec-
tion coatings, dichroic mirrors, and compact discs (among
countless other advances). Polarization-dependent mea-
surements in Raman spectroscopy provide elegant infor-
mation on molecular symmetry and structure. By com-
parison, comparable approaches for describing and utiliz-
ing polarization-dependent interactions in nonlinear optics
are still in their infancy. Polarization characterization and
measurement in nonlinear optics will continue to be areas
of active development for several years to come, motivated
by the unique information content and fueled by increas-
ing advances in capabilities of fast and ultrafast laser
sources.
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